Home
JournalsCollections
For Authors For Reviewers For Editorial Board Members
Article Processing Charges Open Access
Ethics Advertising Policy
Editorial Policy Resource Center
Company Information Contact Us Membership Collaborators Partners
Publications > Journals > Latest Articles
Results per page:
v
Review Article Open Access
Molecular Testing of FLT3 Mutations in Hematolymphoid Malignancies in the Era of Next-generation Sequencing
Shunsuke Koga, Wei Du, Guang Yang, Linsheng Zhang
Published online March 30, 2025
Journal of Clinical and Translational Pathology. doi:10.14218/JCTP.2025.00008
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and play a pivotal role in leukemogenesis. The two primary [...] Read more.

FMS-like tyrosine kinase 3 (FLT3) mutations are among the most common genetic alterations in acute myeloid leukemia (AML) and play a pivotal role in leukemogenesis. The two primary mutation types, internal tandem duplications (ITDs) and tyrosine kinase domain point mutations, serve as key prognostic markers and therapeutic targets. Advances in next-generation sequencing (NGS) have revolutionized FLT3 mutation detection by providing precise insights into mutation architecture, enhancing risk stratification, and enabling personalized treatment strategies. Additionally, these advancements have facilitated molecular minimal residual disease (MRD) testing, which is instrumental in guiding post-remission management. This review summarizes the molecular characteristics, diagnostic approaches, and therapeutic implications of FLT3 mutations in hematologic malignancies.

A narrative review of the current literature on FLT3 mutations was conducted, incorporating data from original research articles, clinical trials, and recent reviews. Relevant studies were identified through a PubMed literature search and manually curated.

FLT3 mutations are detected in approximately 30% of AML cases and occur at lower frequencies in myelodysplastic syndromes, chronic myelomonocytic leukemia, acute lymphoblastic leukemia, and mixed phenotype acute leukemia. NGS enables comprehensive mutation profiling, revealing rare variants and subclonal complexity while supporting MRD detection with high analytic sensitivity. FLT3-ITD-based MRD positivity is strongly associated with relapse and poor survival in AML. Clinical trial data support FLT3 inhibitors, including midostaurin, gilteritinib, and quizartinib, in FLT3-mutated AML. Additionally, MRD-guided therapy and combination treatment strategies are promising approaches to overcoming resistance.

FLT3 mutations play a central role in the pathogenesis and treatment of AML and related malignancies. NGS-based testing and MRD monitoring transform clinical decision-making by refining risk stratification and enabling personalized therapeutic interventions. Establishing standardized testing protocols and the broader integration of FLT3-targeted therapies will be essential for optimizing patient outcomes.

Full article
Hot Topic Commentary Open Access
Key Points and Future Directions from the 2024 Chinese Guidelines for Fatty Liver Disease
Maria Tampaki, Evangelos Cholongitas
Published online March 27, 2025
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00051
Call for Papers Open Access
Call for Papers: Exploring New Frontiers in Pharmacology Research
Lisa Chen
Published online March 25, 2025
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2025.00002
Editorial Open Access
Indexed in Scopus—A new milestone for JERP
Ben J. Gu
Published online March 25, 2025
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2025.00000
Original Article Open Access
Evaluation of In-vitro Activity of Ceftazidime-avibactam Against Carbapenem-resistant Gram-negative Bacteria: A Cross-sectional Study from Pakistan
Momina Ahsan, Fareeha Adnan, Moiz Ahmed Khan, Nazia Khursheed
Published online March 25, 2025
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2025.00001
Abstract
Escalating antimicrobial resistance is a global threat, emphasizing the need to explore alternative treatment options. Hence, we aimed to explore the in-vitro activity of ceftazidime-avibactam [...] Read more.

Escalating antimicrobial resistance is a global threat, emphasizing the need to explore alternative treatment options. Hence, we aimed to explore the in-vitro activity of ceftazidime-avibactam (CAZ-AVI) in clinical isolates of carbapenem-resistant gram-negative bacteria.

This was an observational, cross-sectional study conducted at the Microbiology Department of Indus Hospital, Karachi, Pakistan, from January 2023 to October 2024. Carbapenem-resistant gram-negative rods isolated from clinical specimens received from the outpatient, emergency, and inpatient departments were included. Consecutive, non-probability sampling was employed for the collection of isolates. Identification of the organisms was confirmed using API® ID strips, and antimicrobial susceptibility for carbapenems and CAZ-AVI was determined via the Kirby-Bauer disc diffusion method.

A total of 158 bacterial isolates were characterized as carbapenem-resistant. Of these, 92 (58%) were Enterobacterales, and 66 (42%) were Pseudomonas aeruginosa. CAZ-AVI was susceptible in 17 (11%) of the isolates, of which four (24%) were Klebsiella spp. and Escherichia coli each, and nine (52%) were P. aeruginosa. CAZ-AVI-susceptible strains were predominant among patients aged 26–50 years (n = 6; 35%), most of whom were females (n = 10; 59%) and inpatients (n = 8; 47%). Clinical samples from patients with urinary tract infections grew the most CAZ-AVI-susceptible strains (n = 9; 53%).

Our study demonstrated low CAZ-AVI susceptibility in our carbapenem-resistant gram-negative bacterial strains. Understanding regional antimicrobial patterns in multidrug-resistant bacteria is crucial for the effective use of CAZ-AVI, along with the strict implementation of strategies for controlling antimicrobial resistance.

Full article
Original Article Open Access
Acyclovir-induced Nephrotoxicity: Protective Potential of N-acetylcysteine
Elias Adikwu, Bonsome Bokolo, Tobechi Brendan Nnanna, Kemelayefa James
Published online March 25, 2025
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2024.00037
Abstract
Oxidative stress could be a key process in acyclovir (ACV)-induced nephrotoxicity. N-acetylcysteine (NAC) is a water-soluble antioxidant with anti-inflammatory activity. This study [...] Read more.

Oxidative stress could be a key process in acyclovir (ACV)-induced nephrotoxicity. N-acetylcysteine (NAC) is a water-soluble antioxidant with anti-inflammatory activity. This study aimed to evaluate the protective effect of NAC on ACV-induced nephrotoxicity in adult Wistar rats.

Forty adult male Wistar rats (200–220 g) were used. The rats were randomly divided into eight groups (n = 5/group) and were treated intraperitoneally daily for seven days as follows: Group 1 (Control) was administered water (0.2mL), while groups 2–4 were administered NAC (25, 50, and 100 mg/kg). Group 5 was administered ACV (150 mg/kg), while groups 6–8 were supplemented with NAC (25, 50, and 100 mg/kg) prior to treatment with ACV (150 mg/kg). On day 8, the rats were weighed and euthanized, and blood samples were collected for the assessment of biochemical markers. The kidneys were weighed and subjected to oxidative stress markers and histological evaluations.

ACV had no significant (p > 0.05) effects on the body and kidney weights of rats compared to the control. ACV produced significant (p < 0.001) elevations in kidney malondialdehyde, serum urea, creatinine, and uric acid levels in rats, which differed from the control. There were significant (p < 0.001) decreases in kidney glutathione, superoxide dismutase, peroxidase, and catalase, as well as serum chloride, potassium, bicarbonate, and sodium levels in ACV-treated rats compared to the control. ACV caused widening of Bowman’s space and tubular necrosis in the kidneys of rats. Nonetheless, NAC supplementation abrogated ACV-induced nephrotoxicity in a dose-dependent manner. Kidney histology was restored by NAC supplementation.

NAC protected against ACV-induced nephrotoxicity. This finding shows that NAC may have therapeutic potential for nephrotoxicity caused by ACV.

Full article
Original Article Open Access
Rosiglitazone Prevents the Development of Kindling by Modulating Inflammatory Cytokine Production and Brain Cell Apoptosis in Mice
Ebrahim Hesam, Sahar Fouladi, Mohammad Ali Zeyghami, Somayeh Rahimi, Sara Hosseinzadeh, Abolfazl Amini
Published online March 25, 2025
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2024.00033
Abstract
Epileptogenesis involves complex mechanisms, including inflammation and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor gamma agonist, possesses anti-inflammatory [...] Read more.

Epileptogenesis involves complex mechanisms, including inflammation and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor gamma agonist, possesses anti-inflammatory and neuroprotective properties. This study investigated whether rosiglitazone can prevent pentylenetetrazole (PTZ)-induced kindling in mice by modulating inflammatory cytokines and apoptosis pathways.

Male C57BL/6 mice (n = 8 per group) were assigned to sham, control, or rosiglitazone-treated groups. Kindling was induced with intraperitoneal PTZ (40 mg/kg) every 48 h for 17 days. Rosiglitazone (0.1 mg/kg) was administered 30 m before each PTZ injection. Seizure progression was monitored, and hippocampal tissues were analyzed via immunohistochemistry and Western blotting to assess cytokine levels (interleukin (IL)-10, IL-17A, tumor necrosis factor-alpha, interferon-gamma), caspase-3 activity, and glial fibrillary acidic protein expression.

Rosiglitazone significantly delayed seizure progression, reduced seizure scores, and lowered pro-inflammatory cytokine levels (IL-17A, tumor necrosis factor-alpha, interferon-gamma) while increasing IL-10. Immunohistochemical analysis revealed fewer caspase-3-positive cells and reduced glial fibrillary acidic protein expression in the treatment group compared to controls.

Rosiglitazone exerts neuroprotective effects in PTZ-induced kindling, likely through its anti-inflammatory and anti-apoptotic actions. These findings underscore its potential as a therapeutic agent for mitigating epileptogenesis, warranting further investigation in combination therapies and clinical trials.

Full article
Original Article Open Access
Inhibition of Postmenopausal Osteoporosis in Ovariectomized Mice by Huo Xue Tong Luo Capsule Using Network Pharmacology-based Mechanism Prediction and Pharmacological Validation
Qiangqiang Zhao, Feihong Che, Hongxiao Li, Rihe Hu, Liuchao Hu, Qiushi Wei, Liangliang Xu, Yamei Liu
Published online March 25, 2025
Future Integrative Medicine. doi:10.14218/FIM.2024.00049
Abstract
Huo Xue Tong Luo Capsule (HXTL) has been clinically used to treat osteonecrosis of the femoral head, osteoporosis, and other bone and joint diseases with promising effects. Our [...] Read more.

Huo Xue Tong Luo Capsule (HXTL) has been clinically used to treat osteonecrosis of the femoral head, osteoporosis, and other bone and joint diseases with promising effects. Our previous study has shown that HXTL can promote osteogenesis in mesenchymal stem cells by inhibiting lncRNA-Miat expression through histone modifications. However, the mechanism by which HXTL treats postmenopausal osteoporosis (PMOP) remains unclear. In this study, we used network pharmacology-based mechanism prediction, molecular docking, and pharmacological validation to investigate the mechanism of HXTL in treating PMOP.

The key candidate targets and relevant signaling pathways of HXTL for PMOP treatment were predicted using network pharmacology and molecular docking analysis. RAW264.7 cells were used for Western blot to validate the predicted mechanistic pathways. The ovaries of mice were surgically removed to simulate PMOP. The effect of HXTL on PMOP was evaluated using tartrate-resistant acid phosphatase staining and immunohistochemical assays in vivo.

Network pharmacology analysis suggested that HXTL interacted with 215 key targets linked to PMOP, primarily affecting the PI3K-AKT signaling pathway. Molecular docking showed that the main components of HXTL exhibited strong binding affinity to NFATc1, p-PI3K, and p-AKT1. Furthermore, our in vitro results confirmed that HXTL suppressed the PI3K-AKT signaling pathway. In vivo, HE and tartrate-resistant acid phosphatase staining results showed that HXTL inhibited osteoclast formation and protected bone mass.

This research demonstrated that HXTL could inhibit osteoclast formation and prevent bone loss induced by ovariectomy in mice by inhibiting the PI3K-AKT signaling pathway. These findings provide important evidence for the clinical application of HXTL in treating PMOP.

Full article
Review Article Open Access
Exosomes: A Promising Tool for Liquid Biopsy in Prostate Cancer
Aixin Qiu, Zhen Luo, Xiaohui Liu, Xiangchen Hou, Yao Xiao, Yue Zhang, Yang Yu
Published online March 25, 2025
Cancer Screening and Prevention. doi:10.14218/CSP.2024.00029
Abstract
Prostate cancer (PCa) often manifests insidiously, with most patients being diagnosed at an advanced stage, leading to a poor prognosis. Early detection of PCa can significantly [...] Read more.

Prostate cancer (PCa) often manifests insidiously, with most patients being diagnosed at an advanced stage, leading to a poor prognosis. Early detection of PCa can significantly prolong overall survival by impeding the progression of metastasis. A commonly utilized screening method for detecting PCa is the prostate-specific antigen test. However, since the prostate-specific antigen lacks specificity and sensitivity for PCa identification, there is a paramount urgency to develop precise diagnostic biomarkers for early detection. Extracellular vesicles, known as exosomes, are released by cells into body fluids. Exosomes derived from cancer cells can carry genetic information about the tumor, including DNA, RNA, and proteins, which play crucial roles in tumor initiation, invasion, metastasis, and drug resistance. Studies have indicated that exosomes (including messenger RNAs, microRNAs, long noncoding RNAs and others) can enhance the sensitivity and specificity of PCa diagnosis, indicating their potential for early detection. This review highlights the biological characteristics and functions of exosomes, as well as recent advancements in their use for the diagnosis, prognosis, and treatment of prostate cancer.

Full article
Review Article Open Access
Foundation and Practice of Digital Traditional Chinese Medicine Platforms in Enhanced Recovery After Surgery
Xiaochun Zhang, Guanwen Gong, Zhiwei Jiang, Heiying Jin
Published online March 25, 2025
Future Integrative Medicine. doi:10.14218/FIM.2025.00011
Abstract
This review explores the integration of complexity science—specifically, the biological holographic phenomenon and chaos-fractal theory—with the fundamental principles of traditional [...] Read more.

This review explores the integration of complexity science—specifically, the biological holographic phenomenon and chaos-fractal theory—with the fundamental principles of traditional Chinese medicine (TCM) to optimize perioperative recovery. It examines how these theories provide a scientific foundation for developing a digital TCM diagnosis and treatment platform. Key topics discussed include the application of digital four-diagnosis technology, visualization of perioperative Yin-Yang states, and artificial intelligence-driven biomarker discovery. By quantifying and digitizing core TCM concepts, this approach enables their incorporation into Enhanced Recovery After Surgery protocols. Ultimately, the review highlights the potential of integrating TCM with Western medicine to advance personalized postoperative management, offering both theoretical insights and practical strategies for improving perioperative care.

Full article
PrevPage 7 of 9 1256789Next