Home
JournalsCollections
For Authors For Reviewers For Editorial Board Members
Article Processing Charges Open Access
Ethics Advertising Policy
Editorial Policy Resource Center
Company Information Contact Us Membership Collaborators Partners
Publications > Journals > Most Viewed Articles
Results per page:
v
Review Article Open Access
Polygenic Architecture of Dental Caries: Single Nucleotide Polymorphisms in Genetic Epidemiology
Luiz Alexandre Chisini, Luana Carla Salvi, Rodrigo Varella de Carvalho, Francine dos Santos Costa, Flávio Fernando Demarco, Marcos Britto Correa
Published online July 1, 2025
Gene Expression. doi:10.14218/GE.2025.00018
Abstract
This review presents the latest evidence on the link between genetic single nucleotide polymorphisms and dental caries, highlighting key genes and pathways involved, introducing [...] Read more.

This review presents the latest evidence on the link between genetic single nucleotide polymorphisms and dental caries, highlighting key genes and pathways involved, introducing foundational concepts, and discussing essential methodological considerations for future research. Several genes have been identified as significantly associated with caries experience, including those related to tooth mineral tissues, taste perception, salivary composition and flow, and immune response. Epistatic interactions appear to be crucial in explaining genetic influence. Inconsistencies in the literature are attributed to variations in caries classification, age groups, ethnic backgrounds, limited statistical power, and linkage disequilibrium. Population stratification often confounds results, and few studies adequately control for genetic ancestry. Ensuring Hardy-Weinberg equilibrium and accounting for linkage disequilibrium are essential to avoid bias. Bonferroni corrections for multiple comparisons are fundamental but rarely applied, contributing to inconsistent findings. In conclusion, genetic epidemiology studies suggest that dental caries has a genetic component, accounting for significant individual differences in disease risk.

Full article
Review Article Open Access
A Review of CD4+ T Cell-mediated Immune Drift and Mechanisms in the Treatment of Immune Inflammatory Skin Diseases with Biological Agents
Fangyuan Miao, Chen Luo, Jinfeng Chen, Changjie Shang, Zechao Zhang, Liuyun Yang, Min Zhu
Published online May 30, 2025
Future Integrative Medicine. doi:10.14218/FIM.2024.00057
Abstract
Immunoinflammatory skin diseases are characterized by an imbalance in immune homeostasis, and their chronic inflammatory processes involve a complex regulatory network of CD4+ T [...] Read more.

Immunoinflammatory skin diseases are characterized by an imbalance in immune homeostasis, and their chronic inflammatory processes involve a complex regulatory network of CD4+ T cell differentiation. With the widespread use of biologics (e.g., interleukin-17/interleukin-23 inhibitors) in psoriasis, atopic dermatitis, and other diseases, the adverse effects triggered by the phenomenon of CD4+ T cell-mediated immune drift have attracted significant attention, with the skin being the primary target as an immune organ. In this paper, we provide a review of the clinical features of the skin and the mechanisms of immune drift caused by different types of biologics, as well as the therapeutic modalities.

Full article
Original Article Open Access
Effects of Shenfu Decoction on Neutrophil Chemotactic Function in Septic Mice
Jun Zhang, Yi Jiang, Rui Zhu, Kangli Wang, Wei Li, Chenxi Wang, Xucheng Li, Xiaolong Xu, Qingquan Liu
Published online January 22, 2025
Future Integrative Medicine. doi:10.14218/FIM.2024.00040
Abstract
Sepsis involves a complex cascade of inflammatory reactions and immune system dysregulation. Neutrophils play a crucial role in modulating the anti-inflammatory response, which [...] Read more.

Sepsis involves a complex cascade of inflammatory reactions and immune system dysregulation. Neutrophils play a crucial role in modulating the anti-inflammatory response, which is vital for managing sepsis. Impaired chemotaxis of granulocytes can significantly impact the outcome of sepsis. Shenfu Decoction, by tonifying Qi and warming Yang, enhances the propelling function of Qi for promoting the chemotactic function of neutrophils. This study aimed to investigate the effects of Shenfu Decoction on the chemotactic function of neutrophils in septic mice and the underlying mechanisms.

Thirty 10-week-old specific-pathogen-free male C57BL/6J mice were randomly divided into five groups: sham operation, model, and low-, medium-, and high-dose Shenfu Decoction treatment groups (n = 6 in each group). Sepsis was induced using cecum ligation and puncture procedures. The sham-operated group served as the control. The drug was administered 6 h after surgery; the sham-operated and model groups received saline, while the treatment groups were gavaged every 12 h with the respective concentrations of Shenfu Decoction. Four hours after the last gavage, the mice were euthanized, and samples were collected to determine neutrophil counts and related indices. Primary neutrophils were extracted from the peripheral blood of septic mice and divided into blank control, sham-operated, low-dose, and high-dose groups. These cells were cultured with serum containing the respective treatments to measure neutrophil chemotactic distance, intracellular calcium ion concentration, and the expression levels of chemokine receptors and P2X1 receptors.

Compared with the sham-operated group, the total number of colonies and the number of neutrophils in the peritoneal lavage fluid were increased in the model group (P < 0.05). In the treatment groups, the number of neutrophils in the peritoneal lavage fluid was significantly increased (P < 0.05), while the number of neutrophils in the blood was decreased. Compared with the blank control group, the neutrophil chemotaxis distance was significantly prolonged in the sham-operated group. Additionally, the expression levels of P2X1 and FPR1 receptors were decreased, the expression levels of CXCR1 and CXCR2 receptors were increased (P < 0.05), and the calcium ion concentration was decreased (P > 0.05). Compared with the sham-operated group, the treatment groups exhibited a prolonged neutrophil chemotaxis distance, significantly decreased expression levels of P2X1 and FPR1 receptors, significantly increased expression levels of CXCR1 and CXCR2 receptors (P < 0.05), and significantly decreased calcium ion concentrations (P < 0.05). These effects were positively correlated with the Shenfu Decoction dosage.

Shenfu Decoction can improve the chemotactic function of neutrophils, possibly through the downregulation of P2X1 receptor expression. Its effects are positively correlated with the dosage.

Full article
Review Article Open Access
Targeted Delivery of MicroRNA Sponge Short-hairpin RNA via Vir-inspired Biotechnical Vector: Enhancing Cancer Therapy
Hananeh Rozbahani, Alireza Zangooie, Seyed Mohsen Mirabdolhosseini, Nayeralsadat Fatemi, Mohsen Norouzinia, Amir Sadeghi, Zahra Salehi, Ehsan Nazemalhosseini-Mojarad
Published online August 28, 2025
Gene Expression. doi:10.14218/GE.2025.00042
Abstract
Targeted drug delivery remains a major challenge in cancer therapy, often limiting both efficacy and safety. Although microRNA sponges and short-hairpin RNAs show potential for [...] Read more.

Targeted drug delivery remains a major challenge in cancer therapy, often limiting both efficacy and safety. Although microRNA sponges and short-hairpin RNAs show potential for gene-based cancer treatment, their clinical use is restricted by delivery inefficiency, off-target effects, cytotoxicity, and instability. Viral vectors offer high efficiency but are associated with issues such as immune responses, insertional mutagenesis, and limited cargo capacity. Non-viral carriers are safer and more affordable but suffer from poor transfection efficiency, instability, and inadequate endosomal escape. These limitations hinder the clinical application of RNA therapeutics. The Vir-inspired Biotechnical Vector (VIBV) is a novel hybrid platform that combines viral and non-viral elements with nanotechnology to enable personalized, tumor-specific gene therapy. Engineered with a spindle-shaped nanocore and a polyethylene glycolylated liposomal shell, VIBV ensures immune evasion, prolonged circulation, and controlled therapeutic release triggered by tumor microenvironmental cues such as acidity, hypoxia, and elevated glutathione levels. It delivers oncogenic microRNA sponges, short-hairpin RNAs, tumor-specific antigens, and cyclin-targeting RNAs to enhance gene silencing, immune activation, and tumor suppression. This review examines the limitations of current delivery systems and presents VIBV as a promising next-generation strategy with improved biocompatibility, targeting precision, and potential for cost-effective, personalized cancer therapy, while also addressing its remaining challenges and prospects.

Full article
Review Article Open Access
Artificial Intelligence-driven Strategies and Modern Innovations to Surpass Biopharmaceutic Limitations in Traditional Drug Development
Haneen Badreldin Ali, Muhammad Burhan Khan
Published online September 10, 2025
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2025.00025
Abstract
Drug discovery is an exceptionally long and costly process, often taking over 10 years and costing billions of dollars. Despite these efforts, more than 90% of drug candidates fail, [...] Read more.

Drug discovery is an exceptionally long and costly process, often taking over 10 years and costing billions of dollars. Despite these efforts, more than 90% of drug candidates fail, with most failures occurring during clinical trials due to issues related to efficacy, safety, or poor pharmacokinetics. A major contributor to these failures is biopharmaceutic barriers, including poor solubility, limited permeability, active efflux by transporters such as P-glycoprotein and breast cancer resistance protein, and extensive first-pass metabolism by CYP450 enzymes. These factors severely limit drug absorption and bioavailability, reducing therapeutic efficacy. Although traditional approaches, such as high-throughput absorption, distribution, metabolism, and excretion screening and improved chemical design, have achieved some progress, a major shift is now occurring through the use of in silico modeling, artificial intelligence (AI), and machine learning. These AI-driven tools enhance the prediction accuracy of absorption, distribution, metabolism, and excretion profiles, identify transporter interactions, and even simulate metabolic pathways. Additionally, modern formulation technologies, such as three-dimensional printing, lipid-based nanocarriers, and biodegradable delivery systems, are increasingly being integrated with AI-powered design platforms to personalize and optimize drug delivery. However, these promising advancements also raise regulatory and ethical concerns that must be addressed before widespread adoption. This review examines the major biopharmaceutic barriers responsible for drug development failures and explores how emerging AI-driven strategies and formulation innovations are being used to overcome these limitations. It also discusses current regulatory challenges and ethical considerations associated with adopting these technologies.

Full article
Original Article Open Access
Mapping Metabolic Dysfunction-associated Steatotic Liver Disease Models of Care across 17 Middle East and North Africa Countries: Insights into Guidelines, Infrastructure, and Referral Systems
Mohamed El-Kassas, Khalid M. AlNaamani, Rofida Khalifa, Yusuf Yilmaz, Asma Labidi, Maen Almattooq, Faisal M. Sanai, Maisam W.I. Akroush Nabil Debzi, Mohammed A. Medhat, Imam Waked, Ali Tumi, Mohamed Elbadry, Mohammed Omer Mohammed, Ala I. Sharara, Ali El Houni, Mohamed Alsenbesy, Hisham El-Khayat, Mina Tharwat, Abdel-Naser Elzouki, Khalid A. Alswat, Zobair M. Younossi, on behalf of the Steatotic Liver Disease Study Foundation in Middle East and North Africa (SLMENA) Collaborators
Published online September 1, 2025
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00286
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents an escalating healthcare burden across the Middle East and North Africa (MENA) region; however, system-level [...] Read more.

Metabolic dysfunction-associated steatotic liver disease (MASLD) represents an escalating healthcare burden across the Middle East and North Africa (MENA) region; however, system-level preparedness remains largely undefined. This study aimed to assess existing models of care, clinical infrastructure, policy frameworks, and provider perspectives across 17 MENA countries.

A cross-sectional, mixed-methods survey was distributed to clinicians from MASLD-related specialties across the region. A total of 130 experts (87.2% response rate) from academic, public, and private sectors in 17 countries participated. The questionnaire addressed national policies, diagnostic and therapeutic practices, referral pathways, multidisciplinary team (MDT) integration, and patient/public engagement. Quantitative responses were analyzed descriptively, while qualitative inputs underwent thematic analysis.

Only 35.4% of respondents confirmed the presence of national clinical guidelines for MASLD, and 73.1% reported the absence of a national strategy. Structured referral pathways were reported by 39.2% of participants, and only 31.5% believed the current model adequately addresses MASLD. While 60% supported MDT approaches, implementation remained inconsistent. Limited access to transient elastography was reported by 26.2% of providers. Public education efforts were minimal: 22.3% reported no available tools, and 87.7% indicated the absence of patient-reported outcomes data. Nearly half (47.7%) cited poor patient adherence, attributed to low awareness, financial barriers, and lack of follow-up.

Significant policy, structural, and educational gaps persist in MASLD care across the MENA region. To address this rising burden, countries must adopt integrated national strategies, expand access to non-invasive diagnostic tests, institutionalize MDT care, and invest in both public and provider education as essential pillars of system-wide preparedness.

Full article
Original Article Open Access
GTF3C2 Promotes the Proliferation of Hepatocellular Carcinoma Cells through the USP21/MEK2/ERK1/2 Pathway
Yani Wu, Yingnan Yang, Youju Zhang, Qiuran Xu, Dongsheng Huang, Kangsheng Tu
Published online February 11, 2025
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2024.00386
Abstract
General transcription factor IIIC subunit 2 (GTF3C2) is one of the polymerase III transcription-related factors. Previous studies have revealed that GTF3C2 is involved in regulating [...] Read more.

General transcription factor IIIC subunit 2 (GTF3C2) is one of the polymerase III transcription-related factors. Previous studies have revealed that GTF3C2 is involved in regulating cell proliferation. However, the role of GTF3C2 in hepatocellular carcinoma (HCC) remains unclear. This study aimed to determine its expression, biological function, and mechanism in HCC.

The expression of GTF3C2 in HCC and non-tumor tissues, along with its clinical significance, was investigated using public databases and clinical samples. Reverse transcription-quantitative polymerase chain reaction and Western blot assays were performed to detect the expression of GTF3C2, ubiquitin specific peptidase 21 (USP21), mitogen-activated protein kinase 2 (MEK2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p-ERK1/2 in cells. A luciferase reporter assay was conducted to explore the regulatory effect of GTF3C2 on USP21 transcription. Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine, and colony formation assays were performed to assess HCC cell proliferation. Subcutaneous injection of HCC cells into nude mice was used to evaluate tumor growth in vivo.

GTF3C2 expression was upregulated in HCC tissues and was positively correlated with advanced tumor stages and high tumor grades. HCC patients with high GTF3C2 expression had significantly worse survival outcomes. Knockdown of GTF3C2 suppressed the proliferation of Hep3B and HCCLM3 cells, while overexpression of GTF3C2 facilitated the proliferation of SNU449 and Huh7 cells. GTF3C2 promoted USP21 expression by activating its transcription, which subsequently increased the levels of MEK2 and p-ERK1/2 in HCC cells. Overexpression of both USP21 and MEK2 counteracted the GTF3C2 knockdown-induced inactivation of the ERK1/2 pathway. Moreover, GTF3C2 promoted HCC cell proliferation in vitro and tumor growth in vivo by regulating the USP21/MEK2/ERK1/2 pathway.

Upregulation of GTF3C2 is frequently observed in HCC tissues and predicts poor prognosis. GTF3C2 promotes HCC cell proliferation via the USP21/MEK2/ERK1/2 pathway.

Full article
Original Article Open Access
Protective Effect of Mesaconate on Autoimmune Hepatitis via Suppression of Inflammatory Response and Oxidative Stress
Qian Zhang, Jiajun Wang, Yifan He, Kun Zhang, Wei Hong, Tao Han
Published online July 18, 2025
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00112
Abstract
Autoimmune hepatitis (AIH) is a severe immune-mediated liver disease with limited treatment options beyond immunosuppressants, which carry significant side effects. Existing evidence [...] Read more.

Autoimmune hepatitis (AIH) is a severe immune-mediated liver disease with limited treatment options beyond immunosuppressants, which carry significant side effects. Existing evidence suggests that mesaconate (MSA) possesses immunomodulatory properties and may offer advantages over itaconate derivatives by avoiding succinate dehydrogenase inhibition. However, its specific role in AIH remains unclear. This study aimed to investigate the therapeutic effects of MSA on AIH and to elucidate its underlying mechanisms of action.

A murine AIH model was established via tail vein injection of concanavalin A (ConA, 20 mg/kg). MSA (250 mg/kg) was administered intraperitoneally 6 h before ConA exposure. Liver histology, serum transaminase levels, apoptosis markers, oxidative stress markers, and inflammatory cytokines were analyzed to assess the therapeutic efficacy of MSA. Additionally, RNA sequencing and Western blotting were performed to explore the mechanisms of MSA action. In vitro validation was conducted using RAW264.7 macrophages pretreated with MSA (1 mM) followed by interferon-gamma (IFN-γ, 50 ng/mL) stimulation.

MSA pretreatment effectively mitigated ConA-induced AIH by reducing inflammatory responses, oxidative stress, and apoptosis both in vivo and in vitro. The underlying protective mechanism involved MSA-mediated downregulation of IFN-γ expression and subsequent inhibition of the Janus tyrosine kinase 1/2–signal transducer and activator of transcription 1 signaling pathway. The involvement of this pathway in human AIH was also confirmed.

This study provides the first evidence that MSA ameliorates AIH by suppressing the IFN-γ–Janus tyrosine kinase 1/2–signal transducer and activator of transcription 1 signaling pathway, offering novel mechanistic insights and a promising therapeutic candidate for the future treatment of autoimmune disorders.

Full article
Original Article Open Access
Adrenomedullin as an Immunomodulator of CD14+MerTK+ Circulating Monocytes in Liver Failure Syndromes
Francesca Maria Trovato, Florent Artru, Roosey Sheth, Rima Abdalla, Joseph Wilson, Anna Broderick, John Smith, Stephen Atkinson, Mark J. McPhail
Published online June 24, 2025
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00074
Abstract
Liver failure syndromes are characterised by a dysregulated immune response leading to immune paralysis. Adrenomedullin (ADM) is a potent vasodilator and immunoregulator. This study [...] Read more.

Liver failure syndromes are characterised by a dysregulated immune response leading to immune paralysis. Adrenomedullin (ADM) is a potent vasodilator and immunoregulator. This study aimed to explore the role of ADM in liver failure, hypothesising that there is a detrimental imbalance between ADM and adrenomedullin binding protein (AMBP)1 that promotes a switch of monocytes/macrophages towards a pro-restorative phenotype and function.

Consecutive patients with acute liver failure (ALF), acute-on-chronic liver failure (ACLF), and decompensated cirrhosis, as well as healthy controls (HC) were included between April 2020 and June 2024. Peripheral blood mononuclear cells/monocytes were isolated and used for RNA sequencing and cell culture. ADM and AMBP1 were measured by enzyme-linked immunosorbent assay.

Fifty-four patients with ALF, 25 with ACLF, 9 with decompensated cirrhosis, and 16 with HC were included. ADM expression in isolated monocytes was increased in ALF (log fold change = 5.88, p = 0.000216413) and ACLF (log fold change = 4.62, p = 0.00057122) compared to HC. Plasma ADM concentration was higher in ALF (1,684 ± 1,156 pg/mL) vs. ACLF (836.1 ± 765.2 pg/mL) and HC (164.8 ± 62.73 pg/mL). AMBP1 was significantly reduced in ALF (59.27 ± 44 µg/mL) vs. ACLF (126.3 ± 72.23 µg/mL) and HC (252.8 ± 159.7 µg/mL) (p < 0.0001, ALF vs. HC). Treatment with LPS increased ADM concentration in peripheral blood mononuclear cell supernatant (ALF n = 6; 561.4 ± 1,038 pg/mL vs. 259.2 ± 213.7 pg/mL, ACLF n = 4; 3,202 ± 491.2 vs. 1,757 ± 1,689 pg/mL). The percentage of CD14+ cells expressing Mer tyrosine kinase was reduced after culture with LPS (2.077 ± 0.87%); however, co-culture with ADM 100 nM restored the phenotype (3.852 ± 1.063%).

ADM is increased in liver failure, whereas AMBP1 is reduced. ADM affects monocyte function, increasing Mer Tyrosine Kinase and promoting a pro-restorative, anti-inflammatory phenotype.

Full article
Editorial Open Access
PrevPage 22 of 35 122122233435Next