Ischemic stroke is a complex cerebrovascular disorder characterized by highly unpredictable outcomes influenced by patient-specific variables, including age, stroke severity, and
[...] Read more.
Ischemic stroke is a complex cerebrovascular disorder characterized by highly unpredictable outcomes influenced by patient-specific variables, including age, stroke severity, and preventable stroke-related complications such as infections. Analyses of clinical data have indicated a cumulative post-stroke infection rate of approximately 30%, with reported rates ranging from 5% to 65%. Post-stroke infections pose a significant challenge, as they not only increase the financial burden of stroke care but are also associated with adverse clinical outcomes, prolonged hospital stays, and a higher risk of stroke recurrence. The inflammatory response plays a pivotal role in the pathophysiology of ischemic stroke, encompassing the activation of inflammatory cells, the release of inflammatory mediators, and the engagement of inflammatory signaling pathways. Recent advances in molecular biology have facilitated the identification and investigation of numerous inflammation-related biomarkers. This article reviews the roles and mechanisms of key inflammatory biomarkers, including cytokines, chemokines, adhesion molecules, inflammation-related enzymes and mediators, receptors, signaling pathway molecules, and acute-phase proteins in the context of ischemic stroke, highlighting their significance in stroke pathophysiology and prognostic assessment. Additionally, in conjunction with the latest research advances, the article discusses novel biomarkers such as microRNAs and galectin-3, which are emerging as important tools in multiple domains, including diagnosis and treatment. Drawing on clinical diagnostic and therapeutic practices, this review analyzes the diagnostic and therapeutic roles of both novel and traditional biomarkers in the progression of ischemic stroke, following the temporal sequence from disease onset to prognosis. Finally, the article addresses the limitations of current research and offers perspectives on future directions, providing insights that may contribute to the advancement of precision medicine in the management of ischemic stroke.
Full article