v
Search
Advanced

Publications > Journals > Most Viewed Articles

Results per page:
v
Mini Review Open Access
Jinxin Li, Peng Luo, Ying Liu, Yu Fang, Linhui Wang, Aimin Jiang
Published online February 24, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5352
Exploratory Research and Hypothesis in Medicine. doi:10.14218/ERHM.2024.00038
Abstract
The spatial heterogeneity of tumors has long been a subject of significant interest in oncology. Recent research has revealed that tumors and their microenvironments undergo dynamic [...] Read more.

The spatial heterogeneity of tumors has long been a subject of significant interest in oncology. Recent research has revealed that tumors and their microenvironments undergo dynamic changes over time, particularly in the form of periodic circadian rhythms. Disruptions to these rhythms have been recognized as a pivotal factor in the advancement of tumorigenesis. Such disruptions not only induce dysregulation of gene expression within tumor cells, influencing tumor growth, metabolism, the cell cycle, and vascular homeostasis but also facilitate metastasis. Furthermore, they mediate the remodeling of the tumor immune microenvironment, fostering the development of an immunosuppressive milieu. Additionally, the in vivo metabolism and therapeutic responsiveness of tumor treatments—including chemotherapy, targeted therapy, and immunotherapy—have been shown to be modulated by circadian rhythms. This suggests that time-specific drug administration may enhance treatment efficacy, offering novel insights for precision cancer therapy. In this review, we systematically update contemporary research on the impact of circadian rhythms on tumor biology, encompassing both tumor progression and the efficacy of drug therapies. Building upon these insights, we explore the potential for a synergistic approach that integrates the targeting of rhythmic genes with current tumor treatment modalities. We also discuss the feasibility of tailoring tumor therapy to the rhythmic alterations that define in vivo metabolism and the efficacy of specific therapeutic agents, highlighting the significance of rhythm-based strategies in the personalized treatment of tumors and the prevention of associated diseases.

Full article
Original Article Open Access
Yimeng Zhou, Yang Ding, Yanwei Li, Qiuju Sheng, Chao Han, Yaoxin Fan, Ziyi Wang, Bingchao Lu, Xiaoguang Dou, Chong Zhang
Published online November 8, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5338
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2024.00221
Abstract
Necroptosis is critical for regulating intestinal epithelial cells (IECs). Butyric acid (BA), produced during intestinal microbial metabolism, protects the intestinal epithelial [...] Read more.

Necroptosis is critical for regulating intestinal epithelial cells (IECs). Butyric acid (BA), produced during intestinal microbial metabolism, protects the intestinal epithelial barrier. However, whether necroptosis occurs in IECs during liver cirrhosis and whether sodium butyrate (NaB) can regulate necroptosis have not yet been reported. In this study, we aimed to investigate whether IECs undergo necroptosis in cirrhosis and whether NaB can regulate necroptosis and the related regulatory mechanisms.

Serum levels of RIPK3, MLKL, and Zonulin, as well as fecal BA levels, were measured and correlated in 48 patients with liver cirrhosis and 20 healthy controls. A rat model of liver cirrhosis was established, and NaB was administered. The expressions of MLKL, p-MLKL, and tight junction proteins were measured. We conducted an in vitro investigation of the effect of NaB on necroptosis in the HT29 cell line.

Serum levels of RIPK3, MLKL, and Zonulin in the liver cirrhosis group were higher, while fecal BA levels were lower than those in the control group. Zonulin levels were positively correlated with RIPK3 and MLKL levels, while fecal BA levels were negatively correlated with serum MLKL levels, but not with RIPK3 levels. NaB reduced the mRNA and protein expression of MLKL but had no effect on RIPK1 and RIPK3 in vitro. Rescue experiments demonstrated that NaB inhibited necroptosis through E2F1-mediated regulation of MLKL.

NaB alleviates intestinal mucosal injury and reduces necroptosis in IECs in liver cirrhosis. It also inhibits the necroptosis of IECs and protects the intestinal barrier by reducing E2F1 expression and downregulating MLKL expression levels. These results can be employed to develop a novel strategy for treating complications arising from liver cirrhosis.

Full article
Original Article Open Access
Juan Deng, Kai Ding, Shuqing Liu, Fei Chen, Ru Huang, Bonan Xu, Xin Zhang, Weifen Xie
Published online December 20, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5328
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2024.00197
Abstract
The transcription factor sex-determining region Y-related high-mobility group-box gene 9 (SOX9) plays a critical role in organ development. Although SOX9 has been implicated in [...] Read more.

The transcription factor sex-determining region Y-related high-mobility group-box gene 9 (SOX9) plays a critical role in organ development. Although SOX9 has been implicated in regulating lipid metabolism in vitro, its specific role in metabolic dysfunction-associated steatohepatitis (MASH) remains poorly understood. This study aimed to investigate the role of SOX9 in MASH pathogenesis and explored the underlying mechanisms.

MASH models were established using mice fed either a methionine- and choline-deficient (MCD) diet or a high-fat, high-fructose diet. To evaluate the effects of SOX9, hepatocyte-specific SOX9 deletion or overexpression was performed. Lipidomic analyses were conducted to assess how SOX9 influences hepatic lipid metabolism. RNA sequencing was employed to identify pathways modulated by SOX9 during MASH progression. To elucidate the mechanism further, HepG2 cells were treated with an adenosine monophosphate-activated protein kinase (AMPK) inhibitor to test whether SOX9 acts via AMPK activation.

SOX9 expression was significantly elevated in hepatocytes of MASH mice. Hepatocyte-specific SOX9 deletion exacerbated MCD-induced MASH, whereas overexpression of SOX9 mitigated high-fat, high-fructose-induced MASH. Lipidomic and RNA sequencing analyses revealed that SOX9 suppresses the expression of genes associated with lipid metabolism, inflammation, and fibrosis in MCD-fed mice. Furthermore, SOX9 deletion inhibited AMPK pathway activation, while SOX9 overexpression enhanced it. Notably, administration of an AMPK inhibitor negated the protective effects of SOX9 overexpression, leading to increased lipid accumulation in HepG2 cells.

Our findings demonstrate that SOX9 overexpression alleviates hepatic lipid accumulation in MASH by activating the AMPK pathway. These results highlight SOX9 as a promising therapeutic target for treating MASH.

Full article
Original Article Open Access
Biwu Wu, Haoyue Yuan, Qiang Yuan, Gang Wu, Jin Hu
Published online April 3, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5243
Neurosurgical Subspecialties. doi:10.14218/NSSS.2025.00006
Abstract
Surgical management of supratentorial spontaneous intracerebral hemorrhage (sICH) remains controversial. Craniotomy (CT) reduces mortality but offers limited functional benefits. [...] Read more.

Surgical management of supratentorial spontaneous intracerebral hemorrhage (sICH) remains controversial. Craniotomy (CT) reduces mortality but offers limited functional benefits. Neuroendoscopic surgery (NE) has emerged as a viable alternative, providing improved outcomes. Recent randomized controlled trials (RCTs) strengthen ongoing comparisons between these approaches. This meta-analysis systematically evaluates the efficacy and safety of NE versus CT for supratentorial sICH.

RCTs comparing NE versus CT for supratentorial sICH were systematically identified through comprehensive searches of PubMed, Embase, Cochrane Library, and Web of Science databases. Evaluated outcomes included functional outcome (favorable or unfavorable), hematoma evacuation rate, mortality, intraoperative blood loss, operation time, rebleeding, infection (including pulmonary and intracranial), and total complications. Cochrane’s Risk of Bias-2 tool was employed to assess the risk of bias across the included studies.

Eight RCTs were included, comprising 1,354 patients. NE demonstrated a significant advantage in achieving a favorable functional outcome (risk ratio: 1.43; 95% confidence interval (CI) 1.22, 1.68; p < 0.001) and a notably higher hematoma evacuation rate (mean difference (MD): 7.60; 95% CI 3.59, 11.61; p < 0.001). Additionally, NE was associated with a marked reduction in intraoperative blood loss (MD: −152.95; 95% CI −261.68, −44.22; p = 0.006) and a substantial reduction in operative time (MD: −118.49; 95% CI −147.30, −89.67; p < 0.001). The incidences of unfavorable functional outcome and total complications, including pulmonary infection, were significantly lower in the NE group. However, NE did not lead to an improvement in the mortality rate, and there were no significant differences in the incidences of postoperative rebleeding or intracranial infection between the two groups.

These findings suggest that NE offers distinct advantages in terms of functional outcomes and surgical efficiency for patients with supratentorial sICH. Future studies should involve larger, higher-quality RCTs, and neuroendoscopic techniques should be continuously optimized.

Full article
Original Article Open Access
Elias Adikwu, Bonsome Bokolo, Tobechi Brendan Nnanna, Kemelayefa James
Published online March 25, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5242
Journal of Exploratory Research in Pharmacology. doi:10.14218/JERP.2024.00037
Abstract
Oxidative stress could be a key process in acyclovir (ACV)-induced nephrotoxicity. N-acetylcysteine (NAC) is a water-soluble antioxidant with anti-inflammatory activity. This study [...] Read more.

Oxidative stress could be a key process in acyclovir (ACV)-induced nephrotoxicity. N-acetylcysteine (NAC) is a water-soluble antioxidant with anti-inflammatory activity. This study aimed to evaluate the protective effect of NAC on ACV-induced nephrotoxicity in adult Wistar rats.

Forty adult male Wistar rats (200–220 g) were used. The rats were randomly divided into eight groups (n = 5/group) and were treated intraperitoneally daily for seven days as follows: Group 1 (Control) was administered water (0.2mL), while groups 2–4 were administered NAC (25, 50, and 100 mg/kg). Group 5 was administered ACV (150 mg/kg), while groups 6–8 were supplemented with NAC (25, 50, and 100 mg/kg) prior to treatment with ACV (150 mg/kg). On day 8, the rats were weighed and euthanized, and blood samples were collected for the assessment of biochemical markers. The kidneys were weighed and subjected to oxidative stress markers and histological evaluations.

ACV had no significant (p > 0.05) effects on the body and kidney weights of rats compared to the control. ACV produced significant (p < 0.001) elevations in kidney malondialdehyde, serum urea, creatinine, and uric acid levels in rats, which differed from the control. There were significant (p < 0.001) decreases in kidney glutathione, superoxide dismutase, peroxidase, and catalase, as well as serum chloride, potassium, bicarbonate, and sodium levels in ACV-treated rats compared to the control. ACV caused widening of Bowman’s space and tubular necrosis in the kidneys of rats. Nonetheless, NAC supplementation abrogated ACV-induced nephrotoxicity in a dose-dependent manner. Kidney histology was restored by NAC supplementation.

NAC protected against ACV-induced nephrotoxicity. This finding shows that NAC may have therapeutic potential for nephrotoxicity caused by ACV.

Full article
Review Article Open Access
Ying Nie, Yu Shi, Yida Yang
Published online August 22, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5204
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2025.00212
Abstract
Primary biliary cholangitis (PBC) is a chronic progressive autoimmune disorder characterized by small non-purulent intrahepatic bile duct destruction (ductopenia) and cholestasis. [...] Read more.

Primary biliary cholangitis (PBC) is a chronic progressive autoimmune disorder characterized by small non-purulent intrahepatic bile duct destruction (ductopenia) and cholestasis. While the etiology of PBC remains unclear, it is believed to involve genetic-environmental interactions. Emerging evidence highlights gut microbiota dysbiosis in PBC patients, with increased symbiotic bacteria and decreased pathogenic bacteria. Microbial alterations potentially influence disease pathogenesis through multiple mechanisms, including immune dysregulation, intestinal barrier damage, BA metabolic dysregulation, and cholestasis. These findings suggest that the gut microbiota can serve not only as a non-invasive biomarker for diagnosis and prognosis evaluation but also as a therapeutic target for the disease. In this review, we summarize changes in PBC patients’ gut microbiota, explain how these changes affect disease occurrence and development, and discuss treatment methods with potential clinical value that intervene in gut microbiota.

Full article
Original Article Open Access
Yusuf Musa, Abubakar Sadiq Maiyaki, Yusuf Shehu Umar, Pantong Mark Davwar, Kolawole Oluseyi Akande, Chinwe Philomena Onyia, Kenechukwu Chukwuemeka Okonkwo, Muhammad Manko, Adamu Alhaji Samaila
Published online December 30, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5202
Journal of Translational Gastroenterology. doi:10.14218/JTG.2024.00010
Abstract
Gastrointestinal endoscopy has revolutionized the entire practice of gastroenterology worldwide, including Nigeria. Endoscopy was introduced in Nigeria more than four decades ago, [...] Read more.

Gastrointestinal endoscopy has revolutionized the entire practice of gastroenterology worldwide, including Nigeria. Endoscopy was introduced in Nigeria more than four decades ago, and it has been a story of varying successes and challenges. This study explored the various experiences of endoscopists, the challenges they face, and the efforts put in place to maintain the practice in Nigeria.

This cross-sectional survey was conducted from October to December 2023 among endoscopists practicing in Nigeria. It involved a 30-part self-administered online questionnaire that inquired about individual experiences in endoscopy practice. These included qualifications, competency, facility settings, challenges faced, and innovations employed to address them. At the end of the survey, responses were analyzed using descriptive statistics, Chi-square, and likelihood ratios at the 0.05 level of significance.

A total of 41 respondents participated in the survey from 19 states across the six geopolitical zones of Nigeria, with a mean age ± standard deviation of 43 ± 7 years. Male respondents made up 80.5%, with Nigerian-trained gastroenterologists via the residency program constituting the predominant population, and an average endoscopy experience of five to nine years (39.02%). Most of the respondents work in public institutions (73.17%), with 43.9% working in at least two centers. There was an average of five endoscopists and three to seven endoscopy centers per state. Most centers perform 11–12 upper and four to five lower GI endoscopies per week, respectively, with a predominance of diagnostic procedures. The most common endoscopic intervention was variceal band ligation. The most common challenge faced was the high cost of procedures, accessories, and maintenance of endoscopes.

Endoscopy practice cuts across all the zones and most states of the federation. Both diagnostic and therapeutic procedures are available in most centers. However, the practice is faced with a myriad of challenges, mainly poor financing and inadequate training, among others. As a result, some innovations were locally developed to ease the practice and prevent it from collapsing.

Full article
Original Article Open Access
Daniela Senra, Nara Guisoni, Luis Diambra
Published online April 25, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5137
Gene Expression. doi:10.14218/GE.2024.00071
Abstract
Tumors are complex systems characterized by variations across genetic, transcriptomic, phenotypic, and microenvironmental levels. This study introduced a novel framework for quantifying [...] Read more.

Tumors are complex systems characterized by variations across genetic, transcriptomic, phenotypic, and microenvironmental levels. This study introduced a novel framework for quantifying cancer cell heterogeneity using single-cell RNA sequencing data. The framework comprised several scores aimed at uncovering the complexities of key cancer traits, such as metastasis, tumor progression, and recurrence.

This study leveraged publicly available single-cell transcriptomic data from three human breast cancer subtypes: estrogen receptor-positive, human epidermal growth factor receptor 2-positive, and triple-negative. We employed a quantitative approach, analyzing copy number alterations (CNAs), entropy, transcriptomic heterogeneity, and diverse protein-protein interaction networks (PPINs) to explore critical concepts in cancer biology.

We found that entropy and PPIN activity related to the cell cycle could distinguish cell clusters with elevated mitotic activity, particularly in aggressive breast cancer subtypes. Additionally, CNA distributions varied across cancer subtypes. We also identified positive correlations between the CNA score, entropy, and the activities of PPINs associated with the cell cycle, as well as those linked to basal and mesenchymal cell lines.

This study addresses a gap in the current understanding of breast cancer heterogeneity by presenting a novel quantitative approach that offers deeper insights into tumor biology, surpassing traditional marker-based methods.

Full article
Review Article Open Access
Xieyan Zhuang, Hao Ai, Ying Liu
Published online May 12, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5136
Oncology Advances. doi:10.14218/OnA.2025.00004
Abstract
Endometrial cancer is a common malignant tumor of the female reproductive system, and its incidence is increasing worldwide. The underlying causes of endometrial cancer are multifactorial. [...] Read more.

Endometrial cancer is a common malignant tumor of the female reproductive system, and its incidence is increasing worldwide. The underlying causes of endometrial cancer are multifactorial. In recent years, the role of diet and lifestyle has received considerable attention and has become a key area of research for cancer prevention. Available literature suggests that different dietary patterns, such as the Mediterranean diet or a plant-based diet, along with moderate physical activity, are associated with a reduced risk of this cancer. Despite these findings, significant gaps in knowledge remain, particularly regarding the specific foods, lifestyle choices, and mechanisms of action that can help mitigate the risk of cancer. Furthermore, the effects of cultural and genetic differences among subpopulations make this issue even more complex. In this context, this review aimed to assess the existing literature on the potential role of diet and lifestyle factors in preventing endometrial cancer, evaluate the available data, and highlight areas that require further investigation to provide concrete evidence and recommendations for prevention.

Full article
Review Article Open Access
Ilgiz Gareev, Ozal Beylerli, Albert Sufianov, Leili Gulieva, Valentin Pavlov, Huaizhang Shi
Published online April 23, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 5047
Gene Expression. doi:10.14218/GE.2025.00010
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of global morbidity and mortality, highlighting the urgent need for innovative diagnostic and prognostic approaches to address [...] Read more.

Cardiovascular diseases (CVDs) remain the leading cause of global morbidity and mortality, highlighting the urgent need for innovative diagnostic and prognostic approaches to address their complex pathophysiology. Recent advances in molecular cardiology have unveiled immune-derived microRNAs (miRNAs), or immuno-miRs, as pivotal regulators in the interplay between immune responses and cardiovascular pathology. Secreted by immune cells such as T lymphocytes, macrophages, and neutrophils, these small non-coding RNAs modulate critical signaling pathways by regulating gene expression. Immuno-miRs influence essential processes, including inflammation, endothelial dysfunction, and fibrotic remodeling—core mechanisms underlying conditions such as atherosclerosis, myocardial infarction, and heart failure. Moreover, their presence in systemic circulation within extracellular vesicles underscores their role in intercellular communication, impacting both immune and non-immune cardiovascular cells, such as cardiomyocytes and endothelial cells. This dual functionality renders immuno-miRs promising candidates as diagnostic biomarkers for early disease detection and as prognostic tools for assessing disease progression and therapeutic efficacy. Furthermore, emerging miRNA-based interventions—such as miRNA mimics and inhibitors—show considerable promise in modulating immune dysregulation in CVDs, although clinical translation remains a significant challenge. In this review, we comprehensively examine the regulatory roles of immuno-miRs in both innate and adaptive immune responses and explore recent advancements in miRNA-based therapies. By consolidating current knowledge and identifying existing gaps, we provide a comprehensive overview of the transformative potential of immuno-miRs in CVD management. Integrating these molecules into personalized medicine may pave the way for more effective, targeted, and minimally invasive strategies to combat one of the world’s most pressing health challenges.

Full article
PrevPage 10 of 35 12910113435Next
Back to Top