v
Search
Advanced

Publications > Journals > Most Viewed Articles

Results per page:
v
Review Article Open Access
Ting Gu, Cai-Ying Zheng, Yan-Qin Deng, Xiao-Feng Yang, Wei-Min Bao, Ying-Mei Tang
Published online June 28, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 3370
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2023.00508
Abstract
The hepatitis E virus (HEV) is a zoonotic disease, and infection with HEV in humans primarily causes acute infections and can progress to chronic manifestation in immunocompromised [...] Read more.

The hepatitis E virus (HEV) is a zoonotic disease, and infection with HEV in humans primarily causes acute infections and can progress to chronic manifestation in immunocompromised individuals. Over the past decade, guidelines for diagnosing and treating HEV infection have been developed. This study aimed to systematically assess the quality of current guidelines for diagnosing and treating HEV infection, and we analyzed the differences in guideline quality and primary recommendations and explored possible reasons for these differences.

Guidelines published between 2013 and 2022 were searched, and studies were identified using selection criteria. The study assessed the quality of the included guidelines using the Appraisal of Guidelines for Research and Evaluation tool, extracted the primary recommendations in the guidelines, determined the highest level of evidence supporting the recommendations, and reclassified the evidence using the Oxford Centre for Evidence-Based Medicine grading system.

Seven guidelines were included in the final analysis. The quality of the guidelines varied widely. The discrepancies may have been caused by the lack of external experts, the failure to consider influencing factors in guideline application, and the lack of consideration of the public’s opinion. Analysis of the heterogeneity in primary recommendations revealed differences in algorithms for managing chronic HEV infection, the dosage of ribavirin, and a low level of evidence supporting the primary recommendations.

Guideline quality and primary recommendations vary considerably. Refinement by guideline developers and researchers would facilitate updating and applying guidelines for diagnosing and treating HEV infection.

Full article
Original Article Open Access
Tao Gong, Xiao Liu, Qingyuan Li, Donald R. Branch, Melika Loriamini, Wenxian Wen, Yaoqiang Shi, Qi Tan, Bin Fan, Zhonghui Zhou, Yujia Li, Chunhui Yang, Shilin Li, Xiaoqiong Duan, Limin Chen
Published online June 20, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 3359
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2024.00125
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive tumor with limited treatment options and high mortality. Senecavirus A (SVA) has shown potential in selectively targeting tumors [...] Read more.

Hepatocellular carcinoma (HCC) is a highly aggressive tumor with limited treatment options and high mortality. Senecavirus A (SVA) has shown potential in selectively targeting tumors while sparing healthy tissues. This study aimed to investigate the effects of SVA on HCC cells in vitro and in vivo and to elucidate its mechanisms of action.

The cell counting kit-8 assay and colony formation assay were conducted to examine cell proliferation. Flow cytometry and nuclear staining were employed to analyze cell cycle distribution and apoptosis occurrence. A subcutaneous tumor xenograft HCC mouse model was created in vivo using HepG2 cells, and Ki67 expression in the tumor tissues was assessed. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay and hematoxylin and eosin staining were employed to evaluate HCC apoptosis and the toxicity of SVA on mouse organs.

In vitro, SVA effectively suppressed the growth of tumor cells by inducing apoptosis and cell cycle arrest. However, it did not have a notable effect on normal hepatocytes (MIHA cells). In an in vivo setting, SVA effectively suppressed the growth of HCC in a mouse model. SVA treatment resulted in a significant decrease in Ki67 expression and an increase in apoptosis of tumor cells. No notable histopathological alterations were observed in the organs of mice during SVA administration.

SVA inhibits the growth of HCC cells by inducing cell cycle arrest and apoptosis. It does not cause any noticeable toxicity to vital organs.

Full article
Original Article Open Access
Yan Guo, Hongjia Zhang, Nan Zhao, Ying Peng, Dongya Shen, Yubin Chen, Xiaoxun Zhang, Can-E Tang, Jin Chai
Published online July 15, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 3321
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2024.00017
Abstract
Organic anion-transporting polypeptides (OATPs) play a crucial role in the transport of bile acids and bilirubin. In our previous study, interleukin 6 (IL-6) reduced OATP1B3 levels [...] Read more.

Organic anion-transporting polypeptides (OATPs) play a crucial role in the transport of bile acids and bilirubin. In our previous study, interleukin 6 (IL-6) reduced OATP1B3 levels in cholestatic disease. However, it remains unclear whether IL-6 inhibits OATP1B1 expression in cholestatic diseases. This study aimed to investigate whether IL-6 can inhibit OATP1B1 expression and explore the underlying mechanisms.

The effect of stimulator of interferon genes (STING) signaling on inflammatory factors was investigated in a cholestatic mouse model using RT-qPCR and enzyme-linked immunosorbent assay. To assess the impact of inflammatory factors on OATP1B1 expression in hepatocellular carcinoma, we analyzed OATP1B1 expression by RT-qPCR and Western Blot after treating PLC/PRF/5 cells with TNF-α, IL-1β, and IL-6. To elucidate the mechanism by which IL-6 inhibits OATP1B1 expression, we examined the expression of the OATP1B1 regulator TCF4 in PLC/PRF/5 and HepG2 cells using RT-qPCR and Western Blot. The interaction mechanism between β-catenin/TCF4 and OATP1B1 was investigated by knocking down β-catenin/TCF4 through siRNA transfection.

The STING inhibitor decreased inflammatory factor levels in the cholestatic mouse model, with IL-6 exhibiting the most potent inhibitory effect on OATP1B1. IL-6 downregulated β-catenin/TCF4, leading to decreased OATP1B1 expression. Knocking-down β-catenin/TCF4 counteracted the β-catenin/TCF4-mediated repression of OATP1B1.

STING-mediated IL-6 up-regulation may inhibit OATP1B1, leading to reduced transport of bile acids and bilirubin by OATP1B1. This may contribute to altered pharmacokinetics in patients with diseases associated with increased IL-6 production.

Full article
Mini Review Open Access
Gourab Saha, Richa Singh, Shouvik Chakravarty, Bidyut Roy
Published online June 25, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 3302
Cancer Screening and Prevention. doi:10.14218/CSP.2023.00032
Abstract
Oral squamous cell carcinoma (OSCC) is a predominant type of head and neck cancer in the Indian subcontinent, mostly observed among tobacco and/or alcohol users. Oral leukoplakia [...] Read more.

Oral squamous cell carcinoma (OSCC) is a predominant type of head and neck cancer in the Indian subcontinent, mostly observed among tobacco and/or alcohol users. Oral leukoplakia (OLK) does not seriously affect patients, so it is often ignored in treatment. Some studies have reported genomic alterations and expression deregulation that drive OLK towards OSCC, conducted in two types of studies based on sample collection from (a) disparate or (b) the same patients. Demographic, tobacco/alcohol habits and biological factors may vary significantly if OLK and OSCC samples are collected from disparate patients, but they remain consistent if both tissue samples are from the same patient. Earlier, both targeted candidate gene-based and large-scale omics-based studies identified somatic mutations in TP53, CDKN2A, and PTEN, as well as broad arm-level copy number alterations and epigenetically dysregulated genes in leukoplakia and tumor tissues from disparate patients. Recent omics-based studies have identified early CASP8 somatic alterations, APOBEC mutagenesis, as well as dysregulated immune cell infiltration (decreased CD8+ T cell abundance, enrichment of pro-inflammatory immune cells) as candidate driver events for oral tumor progression from leukoplakia in the same patient. Recent single-cell transcriptomic-driven studies have also identified immune-transcriptomic features as putative driving molecular events in oral tumor development and progression. Here, we reviewed reported differences in driving gene mutations and expression deregulations in disparate and same patient settings. We also highlighted the challenges in sample collection and the opportunity of genomics and transcriptome studies for their emerging role in early diagnosis and progression.

Full article
Review Article Open Access
Jie Li, Yuyuan Zhang, Luqi Hu, Heqing Ye, Xingli Yan, Xin Li, Yifan Li, Shuwen Ye, Bailu Wu, Zhen Li
Published online November 12, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 3298
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2024.00238
Abstract
T-cell receptor (TCR) sequencing provides a novel platform for insight into and characterization of intricate T-cell profiles, advancing the understanding of tumor immune heterogeneity. [...] Read more.

T-cell receptor (TCR) sequencing provides a novel platform for insight into and characterization of intricate T-cell profiles, advancing the understanding of tumor immune heterogeneity. Recently, transarterial chemoembolization (TACE) combined with systemic therapy has become the recommended regimen for advanced hepatocellular carcinoma. The regulation of the immune microenvironment after TACE and its impact on tumor progression and recurrence has been a focus of research. By examining and tracking fluctuations in the TCR repertoire following combination treatment, novel perspectives on the modulation of the tumor microenvironment post-TACE and the underlying mechanisms governing tumor progression and recurrence can be gained. Clarifying the distinctive metrics and dynamic alterations of the TCR repertoire within the context of combination therapy is imperative for understanding the mechanisms of anti-tumor immunity, assessing efficacy, exploiting novel treatments, and further advancing precision oncology in the treatment of hepatocellular carcinoma. In this review, we initially summarized the fundamental characteristics of TCR repertoire and depicted immune microenvironment remodeling after TACE. Ultimately, we illustrated the prospective applications of TCR repertoires in TACE combined with systemic therapy.

Full article
Original Article Open Access
Tania Arora, Puneet Jain, Harshita Sharma, Vikash Prashar, Randeep Singh, Arti Sharma, Harish Changotra, Jyoti Parkash
Published online June 24, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 3289
Gene Expression. doi:10.14218/GE.2023.00143
Abstract
Alzheimer’s disease (AD), an enduring neurodegenerative malady, contributes significantly to dementia cases, with late-onset AD being more common than early-onset AD. Despite extensive [...] Read more.

Alzheimer’s disease (AD), an enduring neurodegenerative malady, contributes significantly to dementia cases, with late-onset AD being more common than early-onset AD. Despite extensive research to diagnose and treat AD, the intricate protein network impedes the development of efficacious drugs or targets. This study endeavored to identify previously undiscovered genetic reservoirs associated with AD progression, which could be targeted as therapeutic markers.

Employing the robust tools of R-language, we dissected vast RNA sequence datasets comprising numerous samples and thousands of genes, pinpointing potential candidates implicated in AD’s trajectory. Thus, we selected the GSE203206 dataset, which includes AD patients and non-dementia controls, based on our criteria. After normalization, RNA-Seq data was compared, and log2fold change was calculated to determine the highly dysregulated genes. Further network analysis of genes and their associated miRNA was performed to determine a characteristic change in control and patient groups.

Differential expression analysis revealed 13 dysregulated genes in AD, wherein 12 were upregulated, and one was down-regulated. Furthermore, we identified hsa-miR-30-5p as a significant miRNA associated with AD, aligning with previous studies and highlighting its high involvement.

This investigation has unveiled four novel genes and a paramount miRNA implicated in AD, thus furnishing potential targets for therapeutic interventions. These discoveries pave the way for further exploration into the intricate functions and implications of these genetic entities in AD.

Full article
Original Article Open Access
Chunru Gu, Liyan Dong, Lu Chai, Zhenhua Tong, Fangbo Gao, Walter Ageno, Fernando Gomes Romeiro, Xingshun Qi
Published online November 21, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 3252
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2024.00226
Abstract
Coronary artery disease (CAD) is increasingly observed in patients with liver cirrhosis. However, data on the incidence and prevalence of CAD in cirrhotic patients are heterogeneous, [...] Read more.

Coronary artery disease (CAD) is increasingly observed in patients with liver cirrhosis. However, data on the incidence and prevalence of CAD in cirrhotic patients are heterogeneous, and the association remains uncertain. In this study, we aimed to conduct a systematic review and meta-analysis to address these issues.

PubMed, EMBASE, and Cochrane Library databases were searched. Incidence, prevalence, and factors associated with CAD were pooled using a random-effects model. Risk ratio (RR) and odds ratio (OR), with their 95% confidence interval (CI), were calculated to evaluate differences in CAD incidence and prevalence between patients with and without liver cirrhosis.

Fifty-one studies were included. The pooled incidences of CAD, acute coronary syndromes, and myocardial infarction (MI) were 2.28%, 2.02%, and 1.80%, respectively. Liver cirrhosis was not significantly associated with CAD incidence (RR = 0.77; 95% CI = 0.46–1.28) or MI (RR = 0.87; 95% CI = 0.49–1.57). The pooled prevalence of CAD, acute coronary syndromes, and MI was 18.87%, 12.54%, and 6.12%, respectively. Liver cirrhosis was not significantly associated with CAD prevalence (OR = 1.29; 95% CI = 0.83–2.01) or MI (OR = 0.58; 95% CI = 0.28–1.22). Non-alcoholic steatohepatitis, hepatitis C virus, advanced age, male sex, diabetes mellitus, hypertension, hyperlipidemia, smoking history, and family history of CAD were significantly associated with CAD in cirrhotic patients.

CAD is common in cirrhotic patients, but cirrhosis itself may not be associated with an increased CAD risk. In addition to traditional risk factors, non-alcoholic steatohepatitis and hepatitis C virus infection are also associated with CAD presence in cirrhotic patients.

Full article
Review Article Open Access
Tian Xiao, Didi Chen, Li Peng, Zhuoxia Li, Wenming Pan, Yuping Dong, Jinxiang Zhang, Min Li
Published online January 2, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 3231
Journal of Clinical and Translational Hepatology. doi:10.14218/JCTH.2024.00375
Abstract
Fluorescence navigation is a novel technique for accurately identifying hepatocellular carcinoma (HCC) lesions during hepatectomy, enabling real-time visualization. Indocyanine [...] Read more.

Fluorescence navigation is a novel technique for accurately identifying hepatocellular carcinoma (HCC) lesions during hepatectomy, enabling real-time visualization. Indocyanine green-based fluorescence guidance has been commonly used to demarcate HCC lesion boundaries, but it cannot distinguish between benign and malignant liver tumors. This review focused on the clinical applications and limitations of indocyanine green, as well as recent advances in novel fluorescent probes for fluorescence-guided surgery of HCC. It covers traditional fluorescent imaging probes such as enzymes, reactive oxygen species, reactive sulfur species, and pH-sensitive probes, followed by an introduction to aggregation-induced emission probes. Aggregation-induced emission probes exhibit strong fluorescence, low background signals, excellent biocompatibility, and high photostability in the aggregate state, but show no fluorescence in dilute solutions. Design strategies for these probes may offer insights for developing novel fluorescent probes for the real-time identification and navigation of HCC during surgery.

Full article
Review Article Open Access
Adeoye Bayo Olufunso, Adeyemi Funmilayo Elizabeth, Bolade Damilola Comfort, Oyeleke Ibukun Oyebimpe, Oyerinde Ayodeji Michael, Fadeyi Blessing, Olatinwo Goodness Olusayo, Ukangwa Ngozi Angela, Adeshina Halliyah Celine, Onyeyiriuche Chinecherem Chibundo, Aanu-Bakare Grace Olajumoke, Adeoye Ayodeji David, Akano Oyedayo Phillips, Adelakin Lola Adeola, Achor Cornilluis Bangsi, Ajaere Sandra Onyinyechi, Osundina Oluwaseun Babatunde, Olatinwo Mercy Olajoju, Adebayo Barakat Temitope, Olanrewaju Okikiola Olamide
Published online January 26, 2025
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 3227
Future Integrative Medicine. doi:10.14218/FIM.2024.00042
Abstract
Cancer continues to pose a substantial public health problem in Nigeria, characterized by rising rates of occurrence and mortality. While there is increasing interest in using natural [...] Read more.

Cancer continues to pose a substantial public health problem in Nigeria, characterized by rising rates of occurrence and mortality. While there is increasing interest in using natural products for cancer treatment, comprehensive data on the specific bioactive compounds in these plants and how they modulate different types of cancer are still lacking. Additionally, although traditional knowledge about these food plants is rich and valuable, it has not been fully integrated with modern scientific research to create standardized treatment protocols. Scientific databases like PubMed, ScienceDirect, Google Scholar, and ResearchGate were explored to retrieve empirical data. The key plants discussed are Spondias mombin, Xanthosoma sagittifolium, Elaeis guineensis, Irvingia gabonensis, Allium cepa, Blighia sapida, Dioscorea dumetorum, Psidium guajava, and Talinum triangulare. These plants demonstrate a wide range of anticancer properties, including the ability to induce apoptosis (cell death), halt the cell cycle, inhibit angiogenesis, and regulate inflammatory responses. They contain a variety of phytochemicals, such as flavonoids, tannins, terpenoids, alkaloids, and organosulfur compounds, which contribute to their anticancer effects. For example, Spondias mombin contains flavonoids that inhibit the formation of tumors, whereas Xanthosoma sagittifolium exhibits cytotoxic effects against leukemia cells. Additionally, Elaeis guineensis exhibits antioxidant properties that counteract oxidative stress, a crucial factor in cancer progression. This review highlights the significance of these plants in developing complementary cancer therapies that can be used alongside conventional treatments. By combining traditional knowledge with contemporary scientific methods, these medicinal plants have the potential to provide innovative approaches to cancer prevention and treatment, addressing the pressing demand for safer and more efficient therapeutic alternatives.

Full article
Mini Review Open Access
John W. Wiley, Gerald A. Higgins
Published online June 28, 2024
[ Html ] [ PDF ] [ Google Scholar ] [ Cite ]  Views: 3223
Journal of Translational Gastroenterology. doi:10.14218/JTG.2024.00017
Abstract
The brain-gut axis represents a bidirectional communication network that integrates neural, hormonal, and immunological signaling between the central nervous system and the gastrointestinal [...] Read more.

The brain-gut axis represents a bidirectional communication network that integrates neural, hormonal, and immunological signaling between the central nervous system and the gastrointestinal tract. Adverse childhood experiences (ACEs) have increasingly been recognized for their profound impact on this axis, with implications for both mental and physical health outcomes. This mini-review explores the emerging field of epigenomics—specifically, how epigenetic modifications incurred by ACEs can influence the brain-gut axis and contribute to the pathophysiology of various disorders. We examine the evidence linking epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs to the modulation of gene expression involved in stress responses, neurodevelopment, and immune function—all of which intersect at the brain-gut axis. Additionally, we discuss the emerging potential of the gut microbiome as both a target and mediator of epigenetic changes, further influencing brain-gut communication in the context of ACEs. The methodological and therapeutic challenges posed by these insights are significant. The reversibility of epigenetic marks and the long-term consequences of early life stress require innovative and comprehensive approaches to intervention. This underscores the need for comprehensive strategies encompassing psychosocial, pharmacological, neuromodulation, and lifestyle interventions tailored to address ACEs’ individualized and persistent effects. Future directions call for a multi-disciplinary approach and longitudinal studies to uncover the full extent of ACEs’ impact on epigenetic regulation and the brain-gut axis, with the goal of developing targeted therapies to mitigate the long-lasting effects on health.

Full article
PrevPage 10 of 34 12910113334Next
Back to Top