Original Article
Open Access
Rong Fan, Ya-Ru Shi, Lei Chen, Chuan-Xin Wang, Yun-Song Qian, Yan-Hang Gao, Chun-Ying Wang, Xiao-Tang Fan, Xiao-Long Liu, Hong-Lian Bai, Dan Zheng, Guo-Qing Jiang, Yan-Long Yu, Xie-Er Liang, Jin-Jun Chen, Wei-Fen Xie, Lu-Tao Du, Hua-Dong Yan, Yu-Jin Gao, Hao Wen, Jing-Feng Liu, Min-Feng Liang, Fei Kong, Jian Sun, Sheng-Hong Ju, Hong-Yang Wang, Jin-Lin Hou
Published online August 1, 2025
[
Html ]
[
PDF ]
[
Google Scholar ]
[ Cite ]
Views: 218
Journal of Clinical and Translational Hepatology.
doi:10.14218/JCTH.2025.00091
Abstract
Given the high burden of hepatocellular carcinoma (HCC), risk stratification in patients with cirrhosis is critical but remains inadequate. In this study, we aimed to develop and
[...] Read more.
Given the high burden of hepatocellular carcinoma (HCC), risk stratification in patients with cirrhosis is critical but remains inadequate. In this study, we aimed to develop and validate an HCC prediction model by integrating radiomics and deep learning features from liver and spleen computed tomography (CT) images into the established age-male-ALBI-platelet (aMAP) clinical model.
Patients were enrolled between 2018 and 2023 from a Chinese multicenter, prospective, observational cirrhosis cohort, all of whom underwent 3-phase contrast-enhanced abdominal CT scans at enrollment. The aMAP clinical score was calculated, and radiomic (PyRadiomics) and deep learning (ResNet-18) features were extracted from liver and spleen regions of interest. Feature selection was performed using the least absolute shrinkage and selection operator.
Among 2,411 patients (median follow-up: 42.7 months [IQR: 32.9–54.1]), 118 developed HCC (three-year cumulative incidence: 3.59%). Chronic hepatitis B virus infection was the main etiology, accounting for 91.5% of cases. The aMAP-CT model, which incorporates CT signatures, significantly outperformed existing models (area under the receiver-operating characteristic curve: 0.809–0.869 in three cohorts). It stratified patients into high-risk (three-year HCC incidence: 26.3%) and low-risk (1.7%) groups. Stepwise application (aMAP → aMAP-CT) further refined stratification (three-year incidences: 1.8% [93.0% of the cohort] vs. 27.2% [7.0%]).
The aMAP-CT model improves HCC risk prediction by integrating CT-based liver and spleen signatures, enabling precise identification of high-risk cirrhosis patients. This approach personalizes surveillance strategies, potentially facilitating earlier detection and improved outcomes.
Full article