Gastric cancer (GC) is a prevalent gastrointestinal malignancy, yet its early detection remains hindered due to the lack of available genetic markers. This study aimed to identify alternative genetic markers for the early prognosis and prevention of GC.
This objective was achieved through the analysis of differentially expressed genes (DEGs) from three datasets obtained from the Gene Expression Omnibus (GEO). By doing so, our goal was to identify hub genes associated with gastric adenocarcinoma that could serve as potential biomarkers for the early detection and management of GC. Three GEO datasets (GSE172032, GSE179581, and GSE181492), consisting of 10 normal and 10 GC samples were analyzed using the Galaxy web server. The visualizations of DEGs, including heatmaps, volcano plots, and MD plots, were generated via the same tool. ShinyGO performed Gene Ontology and KEGG enrichment analysis, while NetworkAnalyst identified a protein-protein interaction (PPI) network and screened 10 potential hub genes. Kaplan Meier plotter was used to analyze overall survival analysis for key hub genes, and NetworkAnalyst was used to assess protein-drug interactions for the top 10 hub genes.
A total of 1,079 common DEGs emerged across datasets, concentrating on significant GC-related pathways. Ten hub genes (H2BC21, H3C12, H2BC17, H3C2, H3C10, ERBB4, H2AC8, H3C8, H2BC14, and MAPT) were found to be linked to GC via PPI analysis. Survival analysis revealed that higher expression levels of ERBB4 and MAPT were associated with poor overall survival in GC patients. Furthermore, protein-drug interaction analysis revealed that the protein product of the MAPT gene exhibited a robust connection with drug compounds, specifically docetaxel and paclitaxel. These findings suggested that these drugs have the potential to inhibit the function of MAPT.
In summary, our findings provide putative candidate biomarkers, provide insights into GC treatment strategies, and highlight avenues for further research, contributing to a better understanding of the pathogenesis of GC.
Full article